Serum Metabolomic Profile of the Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern Casey M. Rebholz, PhD, MS, MNSP, MPH Assistant Professor 6th Annual Workshop on Metabolomics University of Alabama at Birmingham July 2018 **Original Research Communications** Serum untargeted metabolomic profile of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern Casey M Rebholz, 1,2 Alice H Lichtenstein,3 Zihe Zheng, 1,2 Lawrence J Appel, 1,2,4 and Josef Coresh 1,2,4 ¹Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; ²Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; ³Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA; and ⁴Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD Am J Clin Nutr 2018 [E-pub ahead of print] https://doi.org/10.1093/ajcn/nqy099 ©2015, Johns Hopkins University. All rights reserve ## **Background** - Diet is a modifiable risk factor for cardiometabolic diseases - The usual methods for assessing dietary intake are prone to a high amount of measurement error - Biomarkers are less susceptible to some sources of error, but there are few available biomarkers of dietary intake - ➤ Single nutrients vs. dietary pattern 22015, Johns Hopkins University. All rights reserved ## **Study Objective** To identify individual metabolites and an overall metabolomic pattern associated with the DASH dietary pattern ©2015, Johns Hopkins University. All rights reserved ## **DASH Dietary Pattern** - The DASH diet is a dietary pattern that is rich in fruits, vegetables, and low-fat dairy products; moderate in fish, poultry, nuts, and beans; and low in sugar-sweetened beverages, sweets, fats, and red meat - This dietary pattern is recommended by the AHA and U.S. Dietary Guidelines for Americans #### **Methods** - Data and stored serum specimens from NHLBI BioLINCC repository - Serum specimens collected at the end of eight weeks on the DASH or control diet (N=218) - Global, untargeted metabolomic profiling performed using UPLC-MS/MS (Metabolon) - Multivariable linear regression adjusted for age, sex, race, education, BMI, and hypertension - Bonferroni correction - Partial least squares-discriminant analysis (PLS-DA) (4) ©2015, Johns Hopkins University. All rights reserved ## **Interpretation of Findings** | Metabolite | Summary | |---|--| | Chiro-inositol | ✓ Component of structural lipids of cell membranes✓ Phytic acid found in fruits, beans, grains, nuts, and seeds | | N-methylproline | ✓ Citrus fruit and juice | | Stachydrine | ✓ Citrus fruits | | Tryptophan betaine | ✓ Lentils and legumes | | Glucopyranoside | ✓ Cereals and cereal products✓ Total fruit intake | | β-cryptoxanthin | ✓ Provitamin A carotenoid✓ Fruits and vegetables: red peppers, corn, citrus | | Theobromine | ✓ Chocolate✓ Lower diet quality score | | 7-methylxanthine
3-methylxanthine
7-methylurate | ✓ Caffeine and theobromine✓ Desserts | ### **Conclusion** - In this feeding trial, an untargeted metabolomic platform identified a broad array of serum metabolites that differed between the DASH and control dietary patterns after adjusting for participant characteristics and accounting for multiple comparisons. - This newly identified panel of metabolites may be used to objectively assess adherence to the DASH dietary pattern. - Further research is necessary to validate these findings in an independent population. - ©2015, Johns Hopkins University. All rights reserved ## Acknowledgements - NIDDK Mentored Research Scientist Development grant (K01 DK107782) - Mid-Atlantic NORC Pilot & Feasibility (P30 DK072488) - Nexus Award from the Johns Hopkins Institute for Clinical and Translational Research (UL1 TR001079) ©2015, Johns Hopkins University. All rights reserved **Questions?** Thank You! ©2015, Johns Hopkins University. All rights reserved. # Protecting Health, Saving Lives— Millions at a Time | Energy intake, kcal
Carbohydrate, % of energy | 2,084.7 | 2,094.4 | |--|---------|---------| | • | 40.00/ | | | | 49.8% | 58.2% | | Protein, % of energy | 14.1% | 18.2% | | Fat, % of energy | 36.8% | 27.3% | | SFA, % of energy | 14.4% | 7.4% | | MUFA, % of energy | 12.6% | 10.5% | | PUFA, % of energy | 7.1% | 7.6% | | Sodium, mg | 2,922.5 | 2,880.9 | | Calcium, mg | 446.0 | 1,220.1 | | Magnesium, mg | 169.2 | 464.7 | | Potassium, mg | 1,742.8 | 4,589.1 | | Phosphorus, mg | 939.7 | 1,481.1 | | Fiber, g/1,000 kcal | 5.1 | 14.3 | | Cholesterol, mg/1,000 kcal | 118.0 | 67.1 | 8 | | Control Diet | DASH Diet | |---------------------------|---------------------|-----------| | Vitamin A, IU | 6,192.3 | 14,020.0 | | Thiamin (B1), mg | 1.8 | 1.5 | | Riboflavin (B2), mg | 1.5 | 1.9 | | Niacin (B3), mg | 23.1 | 22.6 | | Pantothenic acid (B5), mg | 3.0 | 4.7 | | Vitamin B6, mg | 1.4 | 2.5 | | Vitamin B12, μg | 2.9 | 4.2 | | Vitamin C, mg | 132.8 | 266.2 | | Vitamin E | 7.6 | 12.7 | | Folate, μg | 168.2 | 390.3 | | Iron, mg | 15.6 | 20.2 | | Zinc, mg | 7.6 | 10.4 | | Caffeine, mg | 2.3 | 0.0 | | Carreine, mg | 2.5 | 0.0 | | | Control Diet
(n=108) | DASH Diet
(n=110) | Total
(N=218) | | |--------------------------------|-------------------------|----------------------|------------------|--| | Age category | | | | | | 18-30 years | 14.8% (16) | 9.1% (10) | 11.9% (26) | | | 31-55 years | 63.0% (68) | 75.5% (83) | 69.3% (151) | | | 56+ years | 22.2% (24) | 15.5% (17) | 18.8% (41) | | | Female sex | 42.6% (46) | 52.7% (58) | 47.7% (104) | | | Minority race | 54.6% (59) | 60.9% (67) | 57.8% (126) | | | Household income [†] | | | | | | <\$29,999 | 34.9% (37) | 30.9% (34) | 32.9% (71) | | | \$30,000-\$59,999 | 43.4% (46) | 47.3% (52) | 45.4% (98) | | | ≥\$60,000 | 21.7% (23) | 21.8% (24) | 21.8% (47) | | | Employment status [‡] | | | | | | Full-time | 76.6% (82) | 80.0% (88) | 78.3% (170) | | | Part-time | 7.5% (8) | 5.5% (6) | 6.5% (14) | | | Retired | 7.5% (8) | 3.6% (4) | 5.5% (12) | | | Other | 8.4% (9) | 10.9% (12) | 9.7% (21) | | | | Control Diet | DASH Diet | Total | | | | | |---|---------------------|--------------|--------------|--|--|--|--| | | (n=108) | (n=110) | (N=218) | | | | | | Education level | | | | | | | | | HS graduate or less | 19.4% (21) | 10.9% (12) | 15.1% (33) | | | | | | Some college | 31.5% (34) | 40.9% (45) | 36.2% (79) | | | | | | College graduate | 25.0% (27) | 31.8% (35) | 28.4% (62) | | | | | | Post-graduate work/degree | 24.1% (26) | 16.4% (18) | 20.2% (44) | | | | | | Current smoker§ | 26.8% (11) | 15.6% (7) | 20.9% (18) | | | | | | Weight, kilograms | 82.4 (15.0) | 82.6 (14.7) | 82.5 (14.8) | | | | | | BMI, kg/m ² | 28.0 (3.9) | 28.3 (3.9) | 28.2 (3.9) | | | | | | SBP, mmHg | 130.0 (12.5) | 129.9 (11.9) | 129.9 (12.2) | | | | | | DBP, mmHg | 85.2 (7.0) | 83.7 (7.0) | 84.5 (6.9) | | | | | | Ever used BP medication | 46.9% (23) | 46.2% (24) | 46.5% (47) | | | | | | Hypertension status | 26.9% (29) | 24.6% (27) | 25.7% (56) | | | | | | | | | | | | | | | ©2015, Johns Hopkins University. All rights reserved. | | | | | | | | | | N-
methylpr
oline | stachydri
ne | tryptoph
an
betaine | theobro
mine | 7-
methylur
ate | chiro-
inositol | 3-
methylxa
nthine | methyl
glucopyra
noside | β-
cryptoxa
nthin | 7-
methylxa
nthine | |-------------------------------|-------------------------|-----------------|---------------------------|-----------------|-----------------------|--------------------|--------------------------|-------------------------------|-------------------------|--------------------------| | N-
methylpr
oline | 1 | | | | | | | | | | | stachydri
ne | 0.94
<0.001 | 1 | | | | | | | | | | tryptoph
an
betaine | 0.46
<0.001 | 0.49
<0.001 | 1 | | | | | | | | | theobro
mine | -0.34
<0.001 | -0.33
<0.001 | -0.15
0.005 | 1 | | | | | | | | 7-
methylur
ate | -0.28
<0.001 | -0.27
<0.001 | -0.17
0.002 | 0.77
<0.001 | 1 | | | | | | | chiro-
inositol | 0.67
<0.001 | 0.62
<0.001 | 0.26
<0.001 | -0.21
<0.001 | -0.16
0.004 | 1 | | | | | | 3-
methylxa
nthine | -0.31
<0.001 | -0.30
<0.001 | -0.11
0.05 | 0.91
<0.001 | 0.81
<0.001 | -0.17
0.002 | 1 | | | | | methyl
glucopyra
noside | 0.71
<0.001 | 0.71
<0.001 | 0.44
<0.001 | -0.28
<0.001 | -0.26
<0.001 | 0.58
<0.001 | -0.26
<0.001 | 1 | | | | β-
cryptoxa
nthin | 0.55
<0.001 | 0.56
<0.001 | 0.32
<0.001 | -0.28
<0.001 | -0.26
<0.001 | 0.32
<0.001 | -0.25
<0.001 | 0.48
<0.001 | 1 | | | 7-
methylxa
nthine | -0.28
<0.001 | -0.28
<0.001 | -0.11
0.04 | 0.90
<0.001 | 0.82
<0.001 | -0.16
0.003 | 0.94
<0.001 | -0.25
<0.001 | -0.25
<0.001 | 1 |