Serum Metabolomic Profile of the Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern

Casey M. Rebholz, PhD, MS, MNSP, MPH
Assistant Professor

6th Annual Workshop on Metabolomics University of Alabama at Birmingham July 2018

Original Research Communications

Serum untargeted metabolomic profile of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern

Casey M Rebholz, 1,2 Alice H Lichtenstein,3 Zihe Zheng, 1,2 Lawrence J Appel, 1,2,4 and Josef Coresh 1,2,4

¹Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; ²Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; ³Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA; and ⁴Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD

Am J Clin Nutr 2018 [E-pub ahead of print] https://doi.org/10.1093/ajcn/nqy099

©2015, Johns Hopkins University. All rights reserve

Background

- Diet is a modifiable risk factor for cardiometabolic diseases
- The usual methods for assessing dietary intake are prone to a high amount of measurement error
- Biomarkers are less susceptible to some sources of error, but there are few available biomarkers of dietary intake
 - ➤ Single nutrients vs. dietary pattern

22015, Johns Hopkins University. All rights reserved

Study Objective

 To identify individual metabolites and an overall metabolomic pattern associated with the DASH dietary pattern

©2015, Johns Hopkins University. All rights reserved

DASH Dietary Pattern

- The DASH diet is a dietary pattern that is rich in fruits, vegetables, and low-fat dairy products; moderate in fish, poultry, nuts, and beans; and low in sugar-sweetened beverages, sweets, fats, and red meat
- This dietary pattern is recommended by the AHA and U.S. Dietary Guidelines for Americans

Methods

- Data and stored serum specimens from NHLBI BioLINCC repository
- Serum specimens collected at the end of eight weeks on the DASH or control diet (N=218)
- Global, untargeted metabolomic profiling performed using UPLC-MS/MS (Metabolon)
- Multivariable linear regression adjusted for age, sex, race, education, BMI, and hypertension
- Bonferroni correction
- Partial least squares-discriminant analysis (PLS-DA)

(4)

©2015, Johns Hopkins University. All rights reserved

Interpretation of Findings

Metabolite	Summary
Chiro-inositol	✓ Component of structural lipids of cell membranes✓ Phytic acid found in fruits, beans, grains, nuts, and seeds
N-methylproline	✓ Citrus fruit and juice
Stachydrine	✓ Citrus fruits
Tryptophan betaine	✓ Lentils and legumes
Glucopyranoside	✓ Cereals and cereal products✓ Total fruit intake
β-cryptoxanthin	✓ Provitamin A carotenoid✓ Fruits and vegetables: red peppers, corn, citrus
Theobromine	✓ Chocolate✓ Lower diet quality score
7-methylxanthine 3-methylxanthine 7-methylurate	✓ Caffeine and theobromine✓ Desserts

Conclusion

- In this feeding trial, an untargeted metabolomic platform identified a broad array of serum metabolites that differed between the DASH and control dietary patterns after adjusting for participant characteristics and accounting for multiple comparisons.
- This newly identified panel of metabolites may be used to objectively assess adherence to the DASH dietary pattern.
- Further research is necessary to validate these findings in an independent population.

-

©2015, Johns Hopkins University. All rights reserved

Acknowledgements

- NIDDK Mentored Research Scientist Development grant (K01 DK107782)
- Mid-Atlantic NORC Pilot & Feasibility (P30 DK072488)
- Nexus Award from the Johns Hopkins Institute for Clinical and Translational Research (UL1 TR001079)

©2015, Johns Hopkins University. All rights reserved

Questions?

Thank You!

©2015, Johns Hopkins University. All rights reserved.

Protecting Health, Saving Lives— Millions at a Time

Energy intake, kcal Carbohydrate, % of energy	2,084.7	2,094.4
•	40.00/	
	49.8%	58.2%
Protein, % of energy	14.1%	18.2%
Fat, % of energy	36.8%	27.3%
SFA, % of energy	14.4%	7.4%
MUFA, % of energy	12.6%	10.5%
PUFA, % of energy	7.1%	7.6%
Sodium, mg	2,922.5	2,880.9
Calcium, mg	446.0	1,220.1
Magnesium, mg	169.2	464.7
Potassium, mg	1,742.8	4,589.1
Phosphorus, mg	939.7	1,481.1
Fiber, g/1,000 kcal	5.1	14.3
Cholesterol, mg/1,000 kcal	118.0	67.1

8

	Control Diet	DASH Diet
Vitamin A, IU	6,192.3	14,020.0
Thiamin (B1), mg	1.8	1.5
Riboflavin (B2), mg	1.5	1.9
Niacin (B3), mg	23.1	22.6
Pantothenic acid (B5), mg	3.0	4.7
Vitamin B6, mg	1.4	2.5
Vitamin B12, μg	2.9	4.2
Vitamin C, mg	132.8	266.2
Vitamin E	7.6	12.7
Folate, μg	168.2	390.3
Iron, mg	15.6	20.2
Zinc, mg	7.6	10.4
Caffeine, mg	2.3	0.0
Carreine, mg	2.5	0.0

	Control Diet (n=108)	DASH Diet (n=110)	Total (N=218)	
Age category				
18-30 years	14.8% (16)	9.1% (10)	11.9% (26)	
31-55 years	63.0% (68)	75.5% (83)	69.3% (151)	
56+ years	22.2% (24)	15.5% (17)	18.8% (41)	
Female sex	42.6% (46)	52.7% (58)	47.7% (104)	
Minority race	54.6% (59)	60.9% (67)	57.8% (126)	
Household income [†]				
<\$29,999	34.9% (37)	30.9% (34)	32.9% (71)	
\$30,000-\$59,999	43.4% (46)	47.3% (52)	45.4% (98)	
≥\$60,000	21.7% (23)	21.8% (24)	21.8% (47)	
Employment status [‡]				
Full-time	76.6% (82)	80.0% (88)	78.3% (170)	
Part-time	7.5% (8)	5.5% (6)	6.5% (14)	
Retired	7.5% (8)	3.6% (4)	5.5% (12)	
Other	8.4% (9)	10.9% (12)	9.7% (21)	

	Control Diet	DASH Diet	Total				
	(n=108)	(n=110)	(N=218)				
Education level							
HS graduate or less	19.4% (21)	10.9% (12)	15.1% (33)				
Some college	31.5% (34)	40.9% (45)	36.2% (79)				
College graduate	25.0% (27)	31.8% (35)	28.4% (62)				
Post-graduate work/degree	24.1% (26)	16.4% (18)	20.2% (44)				
Current smoker§	26.8% (11)	15.6% (7)	20.9% (18)				
Weight, kilograms	82.4 (15.0)	82.6 (14.7)	82.5 (14.8)				
BMI, kg/m ²	28.0 (3.9)	28.3 (3.9)	28.2 (3.9)				
SBP, mmHg	130.0 (12.5)	129.9 (11.9)	129.9 (12.2)				
DBP, mmHg	85.2 (7.0)	83.7 (7.0)	84.5 (6.9)				
Ever used BP medication	46.9% (23)	46.2% (24)	46.5% (47)				
Hypertension status	26.9% (29)	24.6% (27)	25.7% (56)				
©2015, Johns Hopkins University. All rights reserved.							

	N- methylpr oline	stachydri ne	tryptoph an betaine	theobro mine	7- methylur ate	chiro- inositol	3- methylxa nthine	methyl glucopyra noside	β- cryptoxa nthin	7- methylxa nthine
N- methylpr oline	1									
stachydri ne	0.94 <0.001	1								
tryptoph an betaine	0.46 <0.001	0.49 <0.001	1							
theobro mine	-0.34 <0.001	-0.33 <0.001	-0.15 0.005	1						
7- methylur ate	-0.28 <0.001	-0.27 <0.001	-0.17 0.002	0.77 <0.001	1					
chiro- inositol	0.67 <0.001	0.62 <0.001	0.26 <0.001	-0.21 <0.001	-0.16 0.004	1				
3- methylxa nthine	-0.31 <0.001	-0.30 <0.001	-0.11 0.05	0.91 <0.001	0.81 <0.001	-0.17 0.002	1			
methyl glucopyra noside	0.71 <0.001	0.71 <0.001	0.44 <0.001	-0.28 <0.001	-0.26 <0.001	0.58 <0.001	-0.26 <0.001	1		
β- cryptoxa nthin	0.55 <0.001	0.56 <0.001	0.32 <0.001	-0.28 <0.001	-0.26 <0.001	0.32 <0.001	-0.25 <0.001	0.48 <0.001	1	
7- methylxa nthine	-0.28 <0.001	-0.28 <0.001	-0.11 0.04	0.90 <0.001	0.82 <0.001	-0.16 0.003	0.94 <0.001	-0.25 <0.001	-0.25 <0.001	1